Social and Governance Implications of Improved Data Efficiency

http://arxiv.org/abs/2001.05068v1

Abstract

Many researchers work on improving the data efficiency of machine learning. What would happen if they succeed? This paper explores the social-economic impact of increased data efficiency. Specifically, we examine the intuition that data efficiency will erode the barriers to entry protecting incumbent data-rich AI firms, exposing them to more competition from data-poor firms. We find that this intuition is only partially correct data efficiency makes it easier to create ML applications, but large AI firms may have more to gain from higher performing AI systems. Further, we find that the effect on privacy, data markets, robustness, and misuse are complex. For example, while it seems intuitive that misuse risk would increase along with data efficiency — as more actors gain access to any level of capability — the net effect crucially depends on how much defensive measures are improved. More investigation into data efficiency, as well as research into the AI production function, will be key to understanding the development of the AI industry and its societal impacts.